Mauro Anselmino: The transverse spin structure of the nucleon - III

About SSA in hadronic interactions

TMDs and SSA in inclusive hadronic interactions

TMDs and SSA in Drell-Yan processes

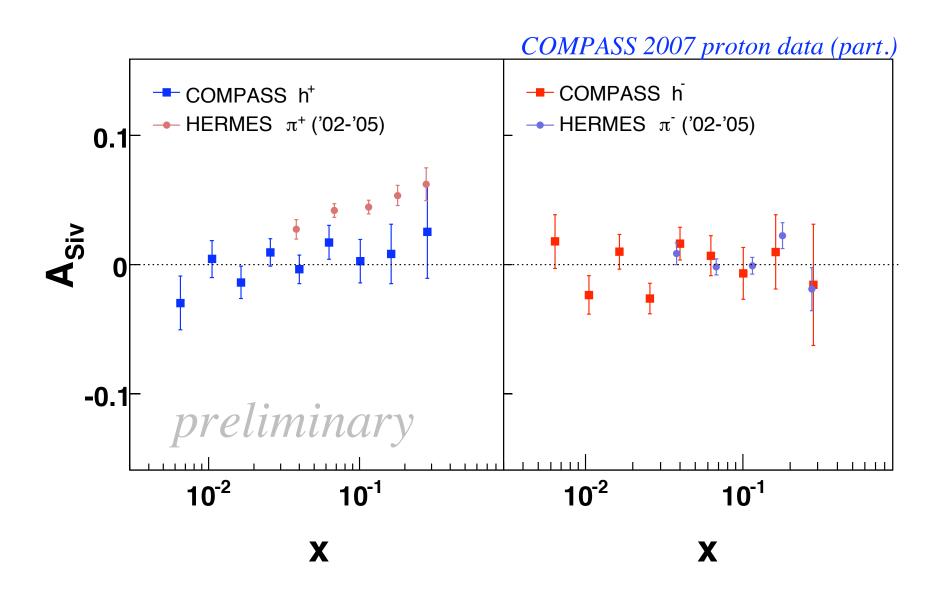
A fundamental QCD test

Drell-Yan processes, the transversity golden channel

Alternative ways to transversity

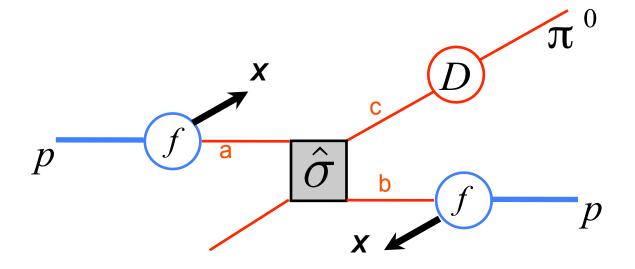
Sivers asymmetry: COMPASS vs HERMES

(F. Bradamante talk at Beijing workshop 2008)

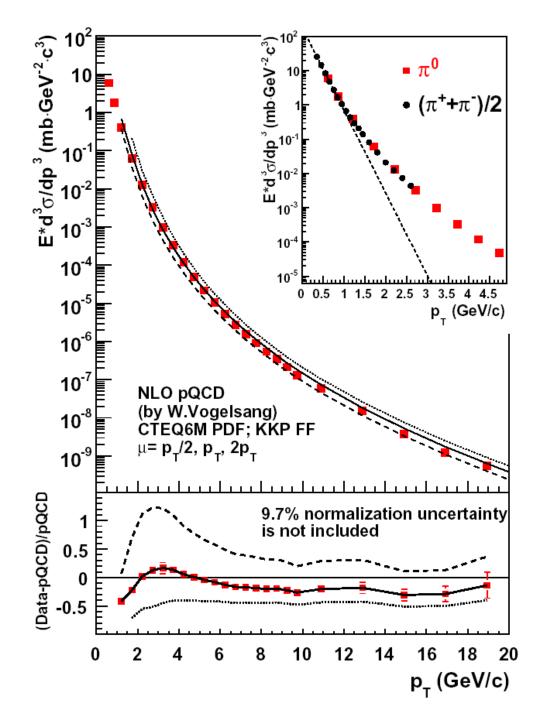


TMDs and SSAs in hadronic collisions

 $p\, p o \pi^0\, X$ (collinear configurations) factorization theorem



$$\mathrm{d}\sigma = \sum_{a,b,c,d=q,\bar{q},g} \underbrace{f_{a/p}(x_a) \otimes f_{b/p}(x_b)}_{\mathrm{PDF}} \otimes \mathrm{d}\hat{\sigma}^{ab \to cd} \otimes \underbrace{D_{\pi/c}(z)}_{\mathrm{FF}}$$
pQCD elementary interactions

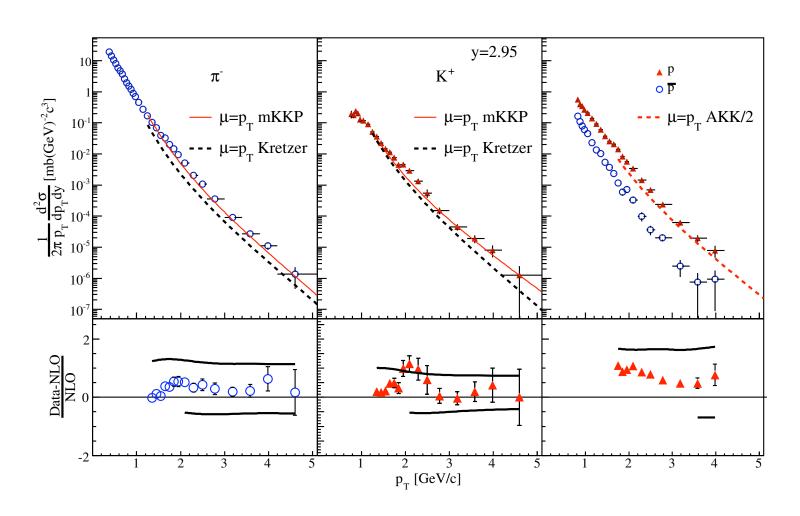


RHIC,
$$p p \rightarrow \pi X$$

 $\sqrt{s} = 200 \,\text{GeV}$

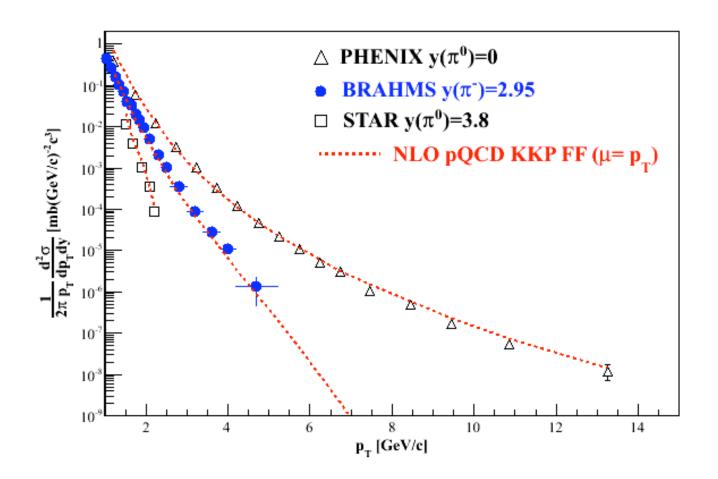
PHENIX data on unpolarized cross section

BRAHMS, proton-proton at 200 GeV



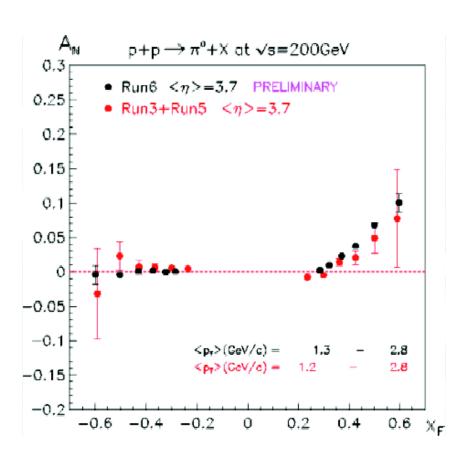
Phys. Rev. Lett. 98, 252001 (2007)

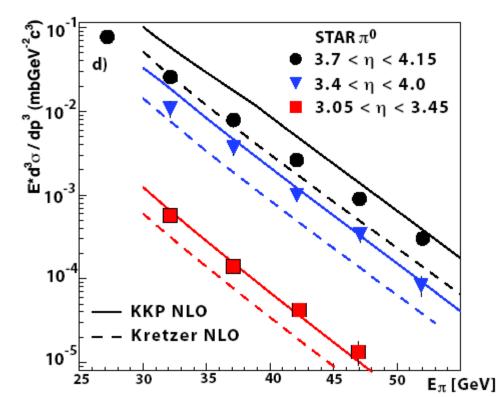
Polarization-averaged cross sections at √s=200 GeV (talk of C. Aidala at Transversity 2008, May 2008, Ferrara)



good pQCD description of data at 200 GeV, at all rapidities, down to p_{\top} of 1-2 GeV/c

but problems with SSAs ...

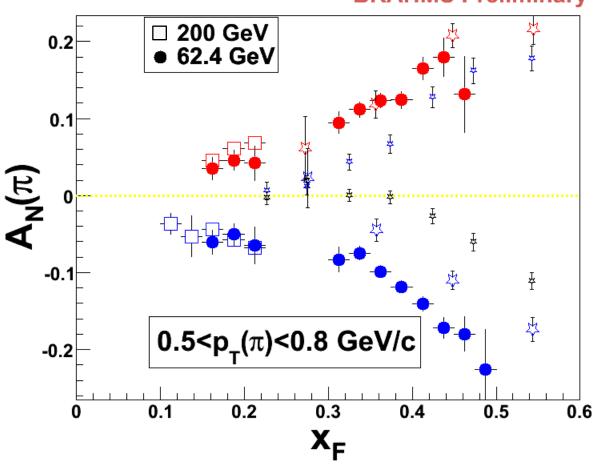




STAR-RHIC $\sqrt{s} = 200 \text{ GeV}$ 1.2 < $p_T < 2.8$

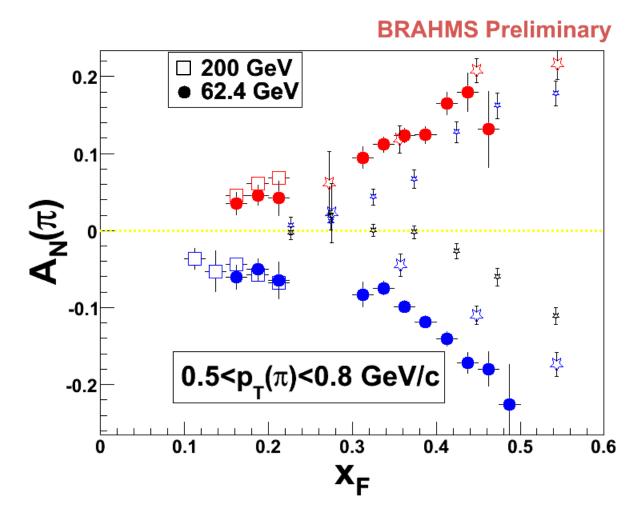
Unifying 62.4 and 200 GeV, BRAHMS + E704

(C. Aidala talk at transversity 2008, Ferrara)



Unifying 62.4 and 200 GeV, BRAHMS + E704

(C. Aidala talk at transversity 2008, Ferrara)

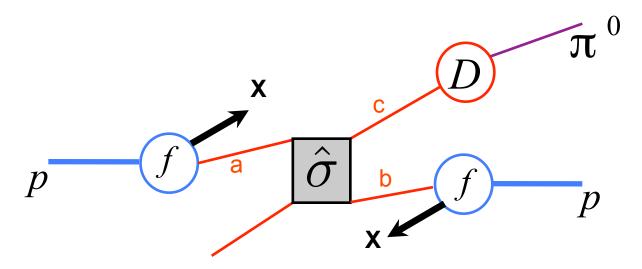


E704 data - all p_T (small stars); $p_T>0.7$ GeV/c (large stars)

SSA in hadronic processes: intrinsic k_{\perp} , factorization?

Two main different (?) approaches

Generalization of collinear scheme (assuming factorization)



$$d\sigma = \sum_{a,b,c=q,\bar{q},g} f_{a/p}(x_a, \boldsymbol{k}_{\perp a}) \otimes f_{b/p}(x_b, \boldsymbol{k}_{\perp b}) \otimes d\hat{\sigma}^{ab \to cd}(\boldsymbol{k}_{\perp a}, \boldsymbol{k}_{\perp b}) \otimes D_{\pi/c}(z, \boldsymbol{p}_{\perp \pi})$$

first proposed by Field-Feynman

Possible sources of SSA, simple approach (one k_{\perp} at a time)

$$d\sigma^{\uparrow} - d\sigma^{\uparrow} = \sum_{a,b,c} \left\{ \Delta^{N} f_{a/p^{\uparrow}}(\mathbf{k}_{\perp}) \otimes f_{b/p} \otimes d\hat{\sigma}(\mathbf{k}_{\perp}) \otimes D_{\pi/c} \right.$$

$$+ \left. \left(h_{1}^{a/p} \right) \otimes f_{b/p} \otimes d\Delta \hat{\sigma}(\mathbf{k}_{\perp}) \otimes \Delta^{N} D_{\pi/c^{\uparrow}}(\mathbf{k}_{\perp}) \right.$$

$$+ \left. \left(h_{1}^{a/p} \right) \otimes \Delta^{N} f_{b^{\uparrow}/p}(\mathbf{k}_{\perp}) \otimes d\Delta' \hat{\sigma}(\mathbf{k}_{\perp}) \otimes D_{\pi/c} \right\}$$

- Sivers effect

(2) transversity

 Collins

 partially suppressed

 by phases

General formalism with helicity amplitudes

$$\mathrm{d}\sigma^{(A,S_A)+(B,S_B)\to C+X} = \sum \rho_{\lambda_a,\lambda_a'}^{a/A,S_A} \, \hat{f}_{a/A,S_A}(x_a,\boldsymbol{k}_{\perp a}) \otimes \rho_{\lambda_b,\lambda_b'}^{b/B,S_B} \, \hat{f}_{b/B,S_B}(x_b,\boldsymbol{k}_{\perp b})$$

$$\otimes \quad \hat{M}_{\lambda_c,\lambda_d;\lambda_a,\lambda_b} \, \hat{M}^*_{\lambda_c',\lambda_d;\lambda_a',\lambda_b'}(\boldsymbol{k}_{\perp a},\boldsymbol{k}_{\perp b}) \, \hat{D}^{\lambda_C,\lambda_C}_{\lambda_c,\lambda_c'}(z,\boldsymbol{k}_{\perp C})$$

$$\text{non planar process,}$$

$$\text{plenty of phases}$$

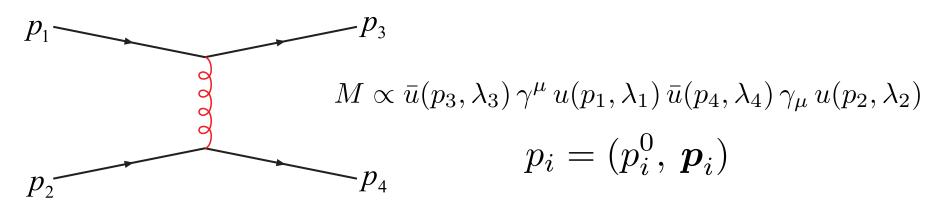
main (maybe) contribution to SSA from Sivers effect

$$d\Delta \sigma^{p,S+p\to\pi+X} = \sum_{q} \Delta^{N} f_{q/p^{\uparrow}}(x_{a}, \boldsymbol{k}_{\perp a}) \otimes f_{b/p}(x_{b}, \boldsymbol{k}_{\perp b})$$

$$\otimes d\hat{\sigma}^{ab\to cd}(\boldsymbol{k}_{\perp a}, \boldsymbol{k}_{\perp b}) \otimes D_{\pi/c}(z, \boldsymbol{p}_{\perp \pi})$$

M.A., M. Boglione, U. D'Alesio, E. Leader, S. Melis, F. Murgia, PR **D71**, 014002 (2005), PR **D73**, 014020 (2006)

Computation of helicity amplitudes



Dirac-Pauli helicity spinors

$$u(p_i, \lambda_i) = \sqrt{p_i^0} \begin{pmatrix} 1 \\ \lambda_i \end{pmatrix} \chi_{\lambda_i}(\hat{\boldsymbol{p}}_i) \qquad \hat{\boldsymbol{p}}_i = (\sin \theta_i \cos \phi_i, \sin \theta_i \sin \phi_i, \cos \theta_i)$$

$$\chi_+(\hat{\boldsymbol{p}}_i) = \begin{pmatrix} \cos(\theta_i/2) e^{-i\Phi_i/2} \\ \sin(\theta_i/2) e^{i\Phi_i/2} \end{pmatrix} \qquad \chi_-(\hat{\boldsymbol{p}}_i) = \begin{pmatrix} -\sin(\theta_i/2) e^{-i\Phi_i/2} \\ \cos(\theta_i/2) e^{i\Phi_i/2} \end{pmatrix}$$

if scattering is not planar all phases are different and remain in the amplitudes; they suppress the results when integrating over \mathbf{k}_{\perp}

$$\begin{split} \frac{E_C\,d\sigma^{(A,S_A)+(B,S_B)\to C+X}}{d^3\boldsymbol{p}_C} = & \sum_{a,b,c,d,\{\lambda\}} \quad \int \frac{dx_a\,dx_b\,dz}{16\pi^2x_ax_bz^2s}\,d^2\boldsymbol{k}_{\perp a}\,d^2\boldsymbol{k}_{\perp b}\,d^3\boldsymbol{k}_{\perp C}\,\delta(\boldsymbol{k}_{\perp C}\cdot\hat{\boldsymbol{p}}_c)\,J(\boldsymbol{k}_{\perp C}) \\ & \times \; \rho^{a/A,S_A}_{\lambda_a,\lambda_a'}\,\hat{f}_{a/A,S_A}(x_a,\boldsymbol{k}_{\perp a})\;\rho^{b/B,S_B}_{\lambda_b,\lambda_b'}\,\hat{f}_{b/B,S_B}(x_b,\boldsymbol{k}_{\perp b}) \\ & \times \; \hat{M}_{\lambda_c,\lambda_d;\lambda_a,\lambda_b}\,\hat{M}^*_{\lambda_c',\lambda_d;\lambda_a',\lambda_b'}\,\delta(\hat{s}+\hat{t}+\hat{u})\;\hat{D}^{\lambda_C,\lambda_C}_{\lambda_c,\lambda_c'}(z,\boldsymbol{k}_{\perp C}) \end{split}$$

$$\rho_{\lambda_{a},\lambda_{a}'}^{a/A,S_{A}} = \begin{pmatrix} \rho_{++}^{a} & \rho_{+-}^{a} \\ \rho_{-+}^{a} & \rho_{--}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} & 1 - P_{z}^{a} \end{pmatrix}_{A,S_{A}} = \frac{1}{2} \begin{pmatrix} 1 + P_{z}^{a} & P_{x}^{a} - iP_{y}^{a} \\ P_{x}^{a} + iP_{y}^{a} &$$

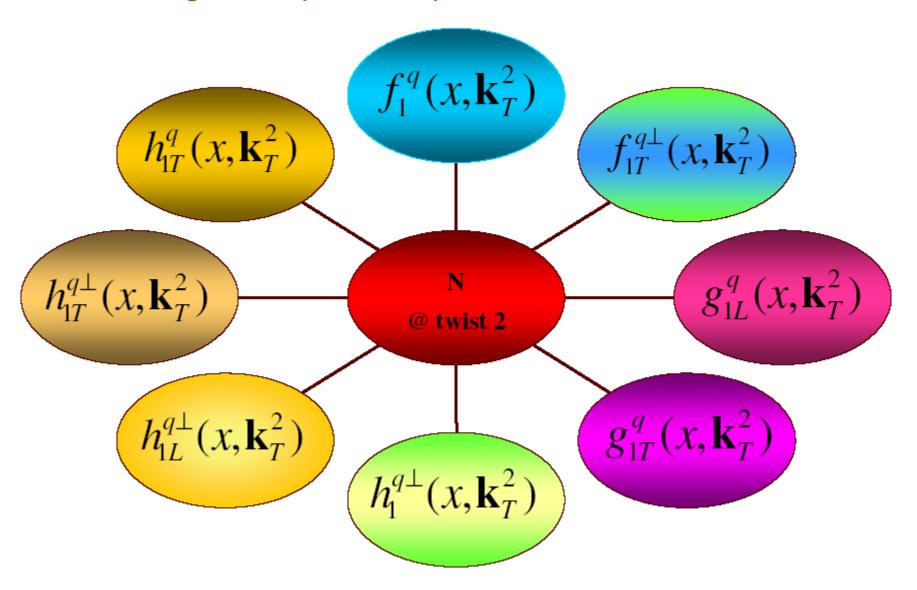
$$(P_{j}^{a} \hat{f}_{a/A,S_{Y}}) = \Delta \hat{f}_{s_{j}/S_{Y}}^{a} = \hat{f}_{s_{j}/\uparrow}^{a} - \hat{f}_{-s_{j}/\uparrow}^{a} \equiv \Delta \hat{f}_{s_{j}/\uparrow}^{a} (x_{a}, \mathbf{k}_{\perp a})$$

$$(P_{j}^{a} \hat{f}_{a/A,S_{Z}}) = \Delta \hat{f}_{s_{j}/S_{Z}}^{a} = \hat{f}_{s_{j}/+}^{a} - \hat{f}_{-s_{j}/+}^{a} \equiv \Delta \hat{f}_{s_{j}/+}^{a} (x_{a}, \mathbf{k}_{\perp a})$$

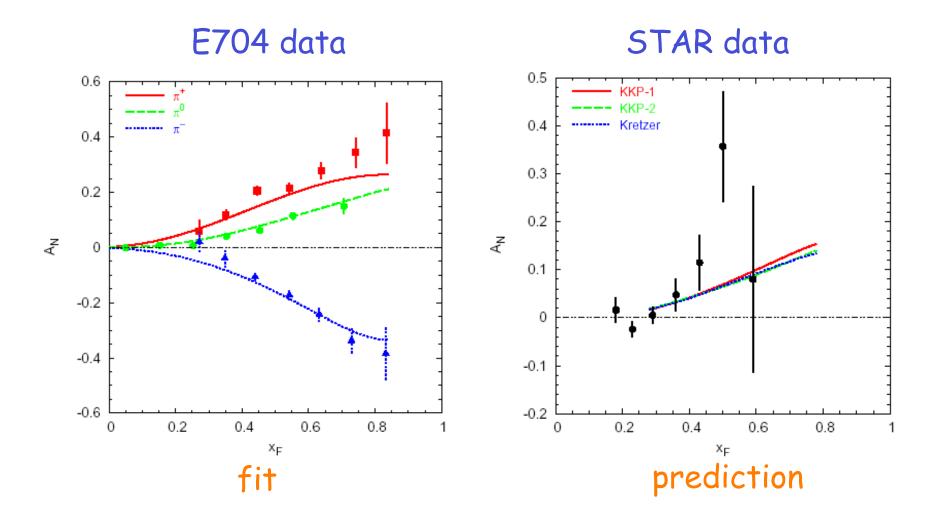
$$(\hat{f}_{a/A,S_{Y}}) = \hat{f}_{a/A}(x_{a}, k_{\perp a}) + \frac{1}{2} \Delta \hat{f}_{a/S_{Y}}(x_{a}, \mathbf{k}_{\perp a})$$

$$\hat{f}_{a/A,S_{T}} - \hat{f}_{a/A,-S_{T}} = \Delta \hat{f}_{a/S_{T}}(x_{a}, \mathbf{k}_{\perp a}) = -2 \frac{k_{\perp a}}{M} \sin(\phi_{S_{A}} - \phi_{a}) f_{1T}^{\perp}(x_{a}, k_{\perp a})
P_{x}^{a} \hat{f}_{a/A,S_{L}} = \Delta \hat{f}_{s_{x}/+}(x_{a}, \mathbf{k}_{\perp a}) = \frac{k_{\perp a}}{M} h_{1L}^{\perp}(x_{a}, k_{\perp a})
P_{y}^{a} \hat{f}_{a/A,S_{L}} = P_{y}^{a} \hat{f}_{a/A} = \Delta \hat{f}_{s_{y}/A}(x_{a}, \mathbf{k}_{\perp a}) = -\frac{k_{\perp a}}{M} h_{1}^{\perp}(x_{a}, k_{\perp a})
P_{z}^{a} \hat{f}_{a/A,S_{L}} = \Delta \hat{f}_{s_{z}/+}(x_{a}, \mathbf{k}_{\perp a}) = g_{1L}(x_{a}, k_{\perp a})
P_{z}^{a} \hat{f}_{a/A,S_{T}} = \Delta \hat{f}_{s_{z}/S_{T}}(x_{a}, \mathbf{k}_{\perp a}) = \frac{k_{\perp a}}{M} \cos(\phi_{S_{A}} - \phi_{a}) g_{1T}^{\perp}(x_{a}, k_{\perp a})
P_{x}^{a} \hat{f}_{a/A,S_{T}} = \Delta \hat{f}_{s_{x}/S_{T}}(x_{a}, \mathbf{k}_{\perp a})
= \left[h_{1T}(x_{a}, k_{\perp a}) + \frac{k_{\perp a}^{2}}{M^{2}} h_{1T}^{\perp}(x_{a}, k_{\perp a}) \right] \cos(\phi_{S_{A}} - \phi_{a})
P_{y}^{a} \hat{f}_{a/A,S_{T}} = \Delta \hat{f}_{s_{y}/S_{T}}(x_{a}, \mathbf{k}_{\perp a})
= -\frac{k_{\perp a}}{M} h_{1}^{\perp}(x_{a}, k_{\perp a}) + h_{1T}(x_{a}, k_{\perp a}) \sin(\phi_{S_{A}} - \phi_{a})$$

8 leading-twist spin-k dependent distribution functions



U. D'Alesio, F. Murgia



Higher-twist partonic correlations

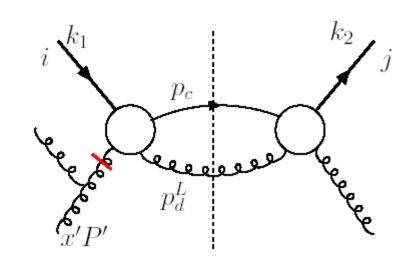
(Efremov, Teryaev; Qiu, Sterman; Kouvaris, Vogelsang, Yuan)

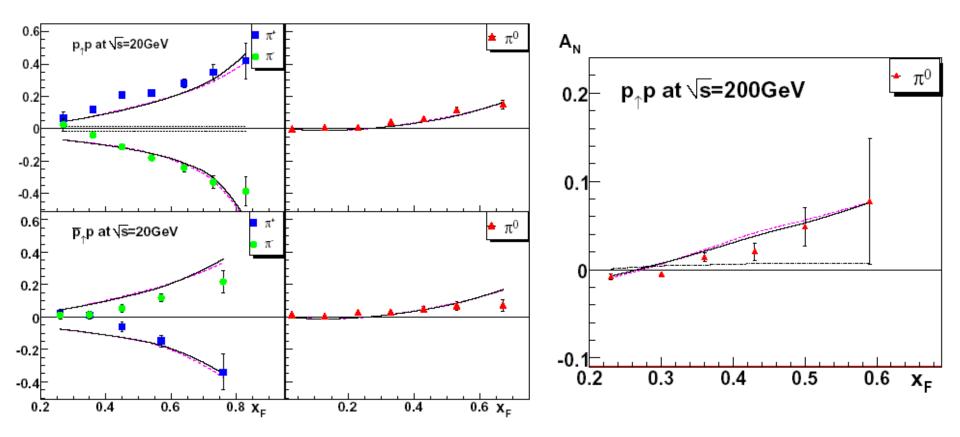
contribution to SSA $(A^{\uparrow}B \rightarrow h X)$

$$\mathrm{d}\Delta\sigma\propto\sum_{a,b,c}\underbrace{T_a(k_1,k_2,S_\perp)}\otimes f_{b/B}(x_b)\otimes \underbrace{H^{ab o c}(k_1,k_2)}\otimes D_{h/c}(z)$$
 twist-3 functions hard interactions

"collinear expansion" at order $k_{i\perp}$

$$T_a = N_a x^{\alpha_a} (1 - x)^{\beta_a} f_{a/A}(x)$$

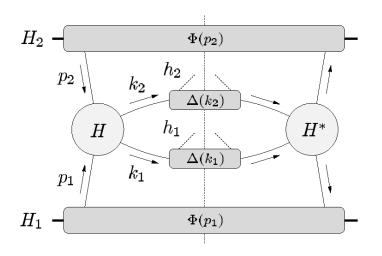




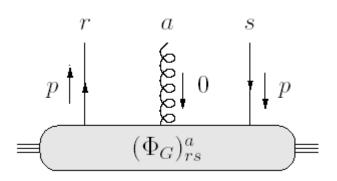
fits of E704 and STAR data Kouvaris, Qiu, Vogelsang, Yuan

Gluonic pole cross sections and SSA in $H_1H_2 \rightarrow h_1h_2X$

Bacchetta, Bomhof, Mulders, Pijlman; Vogelsang, Yuan; Teryaev



factorization?



Sivers contribution to SSA $(T_a \propto f_{1T}^{\perp (1)})$

$$d\Delta\sigma \propto \sum_{a,b,c} f_{1T}^{\perp(1)}(x_1) \otimes f_{b/H_2}(x_2) \otimes d\hat{\sigma}_{[a]b \to cd} \otimes D_{h_1/c}(z_1) D_{h_2/d}(z_2)$$

gluonic pole cross sections take into account gauge links

$$\mathrm{d}\hat{\sigma}_{[a]b\to cd} = \sum_{D} C_G^{[D]} \; \mathrm{d}\hat{\sigma}_{ab\to cd}^{D} \qquad C_G^{[D]} \; \underset{\mathrm{link}\; \mathit{Colour}\; \mathrm{factors}}{\mathrm{biagram}} \; \mathrm{dependent}\; \mathit{Gauge}$$

(breaking of factorization?)

Gluonic pole cross sections and SSA in $H_1H_2 ightarrow h_1h_2X$

$$\frac{d\hat{\sigma}_{[q]q \to qq}}{d\hat{t}} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{3}{2} + \frac{3}$$

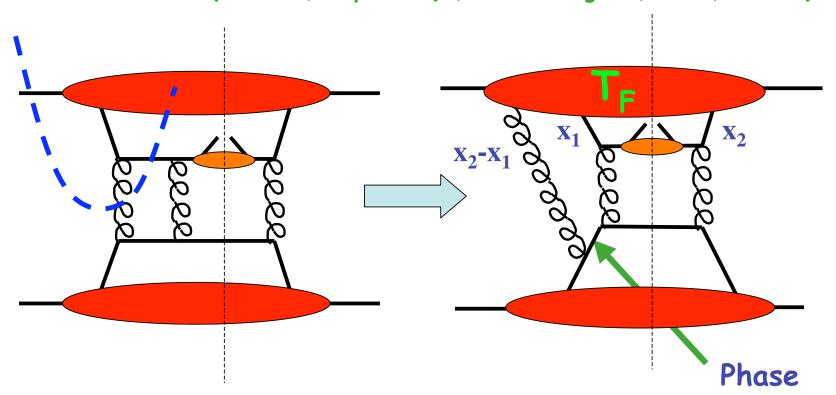
to be compared with the usual cross section

$$\frac{d\hat{\sigma}_{qq \to qq}}{d\hat{t}} = \frac{1}{2} + \frac{1}{2$$

$$d\hat{\sigma}_{[\ell]q\to\ell q} = d\hat{\sigma}_{\ell q\to\ell q} \qquad d\hat{\sigma}_{[q]\bar{q}\to\ell^+\ell^-} = -d\hat{\sigma}_{q\bar{q}\to\ell^+\ell^-}$$

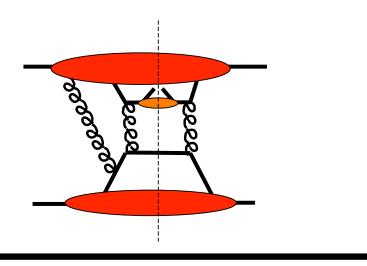
From W. Vogelsang talk at Beijing 2008

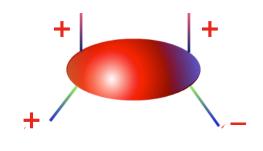
power-suppressed effects in QCD much richer than
 mass terms (Efremov, Teryaev; Qiu, Sterman; Eguchi, Koike, Tanaka)



Collinear factorization in terms of "quark-gluon correlation":

$$T_F(x,x) = \int rac{dy_1^-}{4\pi} e^{ixP^+y_1^-} \langle P, \vec{s}_T | \bar{\psi}_a(0) \gamma^+ \left[\int dy_2^- \epsilon^{s_T \sigma n \bar{n}} F_{\sigma}^+(y_2^-)
ight] \psi_a(y_1^-) | P, \vec{s}_T
angle$$





- phase in hard scattering
- hel. flip because of qgq
- factorization for pp→πX
 established
- phenomenology

Qiu, Sterman Kouvaris, Qiu, WV, Yuan

- phase in distribution fct.
 (but where exactly?)
- hel. flip because of OAM
- factorization for pp→πX
 assumed
- phenomenology

Anselmino, Boglione, D'Alesio, Leader, Melis, Murgia, ...

Crucial role of gauge-links in TMDs

Brodsky, Hwang, Schmidt; Collins; Belitsky, Ji, Yuan;

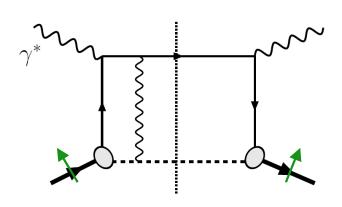
• profound implication:

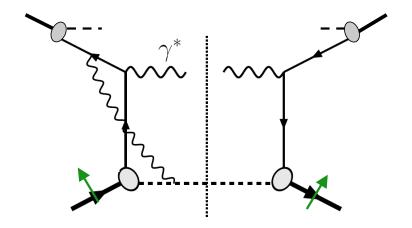
process-dependece of Sivers functions

$$f_{\mathrm{DY}}^{\mathrm{Sivers}}(x, k_{\perp}) = -f_{\mathrm{DIS}}^{\mathrm{Sivers}}(x, k_{\perp})$$

DIS: "attractive"

DY: "repulsive"

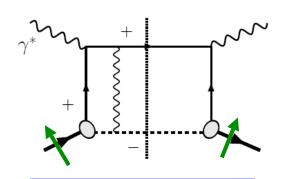




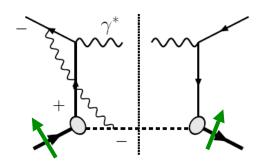
 hugely important in QCD -- tests a lot of what we know about description of hard processes

Non-universality of Sivers Asymmetries: Unique Prediction of Gauge Theory!

Simple QED example:

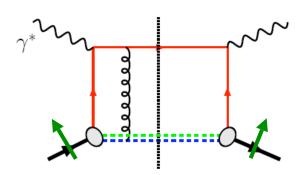


DIS: attractive



Drell-Yan: repulsive

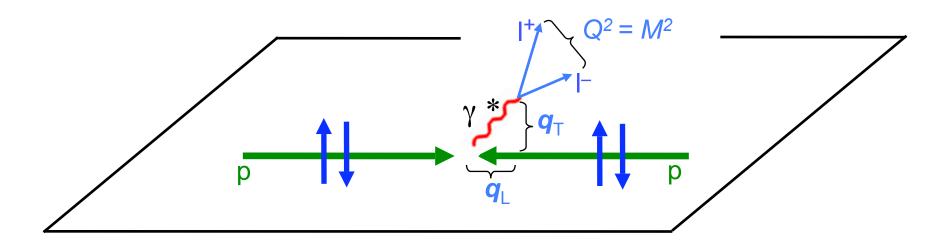
Same in QCD:



As a result:

$$Sivers|_{DIS} = -Sivers|_{DY}$$

TMDs and SSAs in Drell-Yan processes



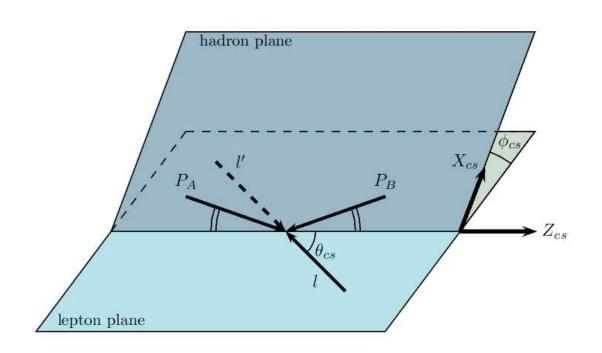
factorization holds, two scales, M^2 , and q_T

$$d\sigma^{D-Y} = \sum_{a} f_q(x_1, \boldsymbol{k}_{\perp 1}; Q^2) \otimes f_{\bar{q}}(x_2, \boldsymbol{k}_{\perp 2}; Q^2) d\hat{\sigma}^{q\bar{q} \to \ell^+ \ell^-}$$

3 planes: plane \perp to polarization vectors, $p - \gamma$ * plane, $l^+ - l^-$ plane no fragmentation process

Unpolarized cross section already very interesting

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega} = \frac{3}{4\pi} \frac{1}{\lambda + 3} \left(1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi \right)$$



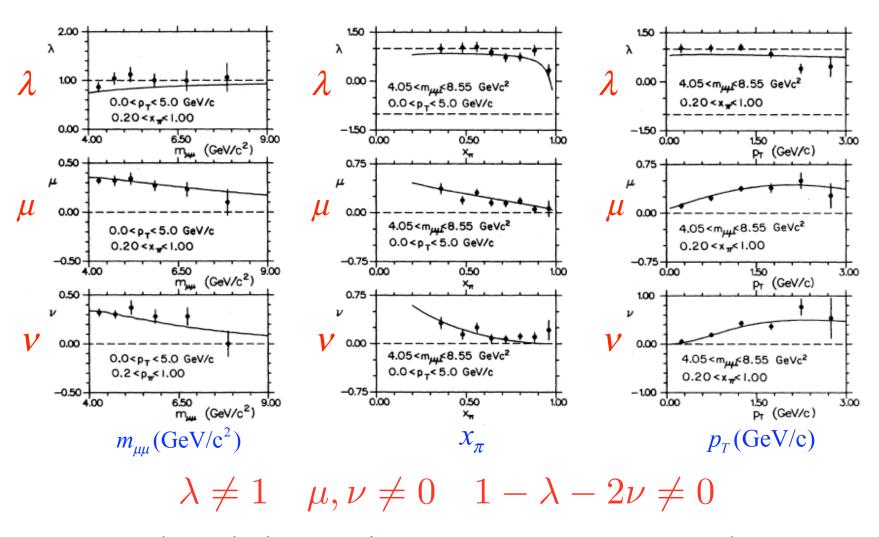
Collins-Soper frame

naive collinear parton model: $\lambda=1$ $\mu=
u=0$

Decay angular distributions in pion-induced Drell-Yan

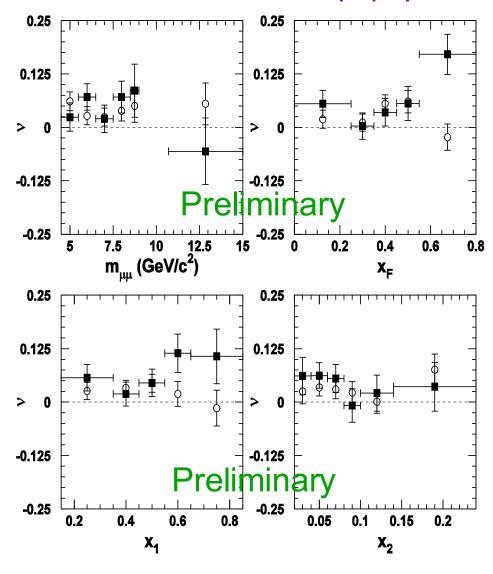
E615 Data 252 GeV π^{-} + W

Phys. Rev. D 39 (1989) 92



(Jen-Chieh Peng talk at transversity 2008, Ferrara)

Angular Distribution in E866 p+p/p+d Drell-Yan



PRL 99 (2007) 082301

TMDs help: for example, the cos 2ϕ term can be originated by the Boer-Mulders effect

$$d\sigma \propto d\sigma^{0} + \sum_{q} h_{1q}^{\perp}(x_{1}, k_{\perp}) \otimes h_{1\bar{q}}^{\perp}(x_{2}, k_{\perp}) \otimes \underbrace{(d\hat{\sigma}^{\uparrow\uparrow} - d\hat{\sigma}^{\uparrow\downarrow})}_{\sin^{2}\theta \cos 2\phi}$$

Polarized D-Y processes with intrinsic k_{\perp} have a rich structure, similar to SIDIS

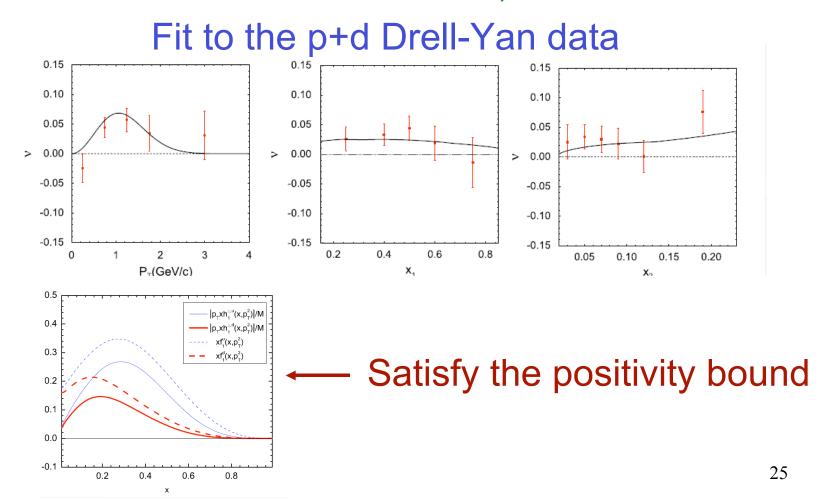
SSA in D-Y has a contribution from the coupling of the transversity distribution to B-M function

$$d\sigma^{\uparrow} - d\sigma^{\downarrow} \propto \sum_{q} h_{1q}(x_1) \otimes h_{1\bar{q}}^{\downarrow}(x_2, k_{\perp}) \otimes \underbrace{(d\hat{\sigma}^{\uparrow\uparrow} - d\hat{\sigma}^{\uparrow\downarrow})}_{\cos 2\phi}$$

B-M
$$f_{q,\mathbf{s}_q/p}(x,\mathbf{k}_{\perp}) = \frac{1}{2} f_{q/p}(x,k_{\perp}) - \frac{k_{\perp}}{2M} h_{1q}^{\perp}(x,k_{\perp}) \mathbf{s}_q \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp})$$

Extraction of Boer-Mulders functions from p+d Drell-Yan

(B. Zhang, Z. Lu, B-Q. Ma and I. Schmidt, arXiv:0803.1692)



Sivers effect in D-Y processes

By looking at the $d^4\sigma/d^4q$ cross section one can single out the Sivers effect in D-Y processes

$$d\sigma^{\uparrow} - d\sigma^{\downarrow} \propto \sum_{q} \Delta^{N} f_{q/p}(x_1, k_{\perp}) \otimes f_{\bar{q}/p}(x_2) \otimes d\hat{\sigma}$$

$$A_{N} = \frac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}}$$

$$\sum_{q} e_{q}^{2} \int d^{2}\mathbf{k}_{\perp q} d^{2}\mathbf{k}_{\perp \bar{q}} \delta^{2}(\mathbf{k}_{\perp q} + \mathbf{k}_{\perp \bar{q}} - \mathbf{q}_{T}) \underbrace{\Delta^{N} f_{q/p^{\uparrow}}(x_{q}, \mathbf{k}_{\perp})} f_{\bar{q}/p^{\uparrow}}(x_{\bar{q}}, \mathbf{k}_{\perp \bar{q}})$$

$$2 \sum_{q} e_{q}^{2} \int d^{2}\mathbf{k}_{\perp q} d^{2}\mathbf{k}_{\perp \bar{q}} \delta^{2}(\mathbf{k}_{\perp q} + \mathbf{k}_{\perp \bar{q}} - \mathbf{q}_{T}) f_{q/p^{\uparrow}}(x_{q}, \mathbf{k}_{\perp}) f_{\bar{q}/p^{\uparrow}}(x_{\bar{q}}, \mathbf{k}_{\perp \bar{q}})$$

$$q = u, \bar{u}, d, \bar{d}, s, \bar{s}$$

$$A_N^{\sin(\phi_S - \phi_\gamma)} \equiv \frac{2\int_0^{2\pi} \! \mathrm{d}\phi_\gamma \left[\mathrm{d}\sigma^\uparrow - \mathrm{d}\sigma^\downarrow\right] \sin(\phi_S - \phi_\gamma)}{\int_0^{2\pi} \! \mathrm{d}\phi_\gamma \left[\mathrm{d}\sigma^\uparrow + \mathrm{d}\sigma^\downarrow\right]} \quad \text{(p-p c.m. frame)}$$

Predictions for A_N at RHIC (S. Melis)

Sivers functions as extracted by

M.A., M. Boglione, U. D'Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin and C. Türk from SIDIS data, with opposite sign

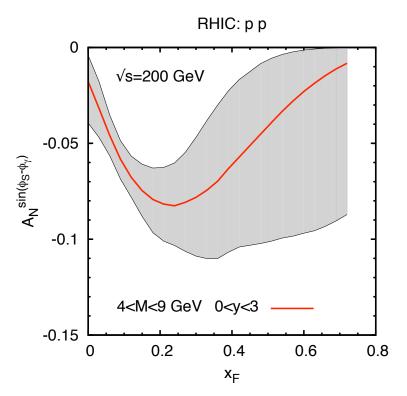


Figure 9: The single spin asymmetries $A_N^{\sin(\phi_S - \phi_\gamma)}$ for the Drell-Yan process $p^{\uparrow}p \to \mu^{+}\mu^{-} + X$ at RHIC, as function of $x_F = x_a - x_b$, averaged over the invariant mass range 4 < M < 9, rapidity 0 < y < 3 and transverse momentum $0 < q_T < 1 \text{ GeV}/c$, for $\sqrt{s} = 200 \text{ GeV}$.

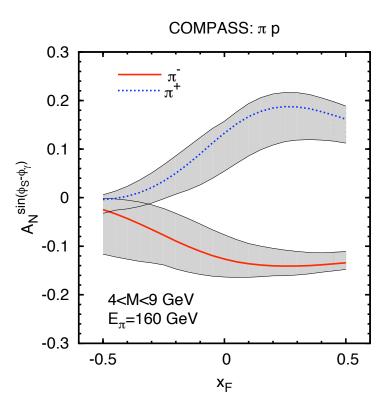


Figure 1: The single spin asymmetries $A_N^{\sin(\phi_S-\phi_\gamma)}$ for the Drell-Yan process $\pi p \to \mu^+ \mu^- + X$ at COMPASS, as function of $x_F = x_a - x_b$, averaged over the invariant mass range 4 < M < 9 and transverse momentum $0 < q_T < 1~{\rm GeV}/c$, for a pion beam energy of 160 GeV/c.

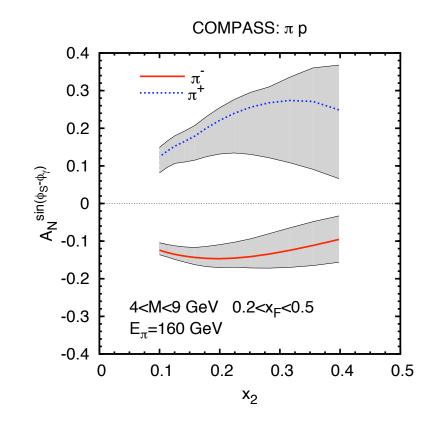


Figure 2: The single spin asymmetries $A_N^{\sin(\phi_S - \phi_\gamma)}$ for the Drell-Yan process $\pi p \to \mu^+ \mu^- + X$ at COMPASS, as function of x_b , averaged over the invariant mass range 4 < M < 9, $0.2 < x_F < 0.5$ and transverse momentum $0 < q_T < 1$ GeV/c, for a pion beam energy of 160 GeV/c. MRSS92 pion pdf

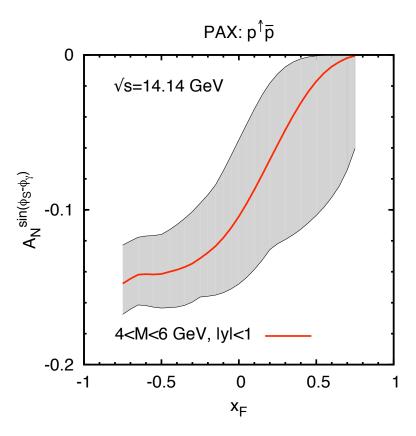
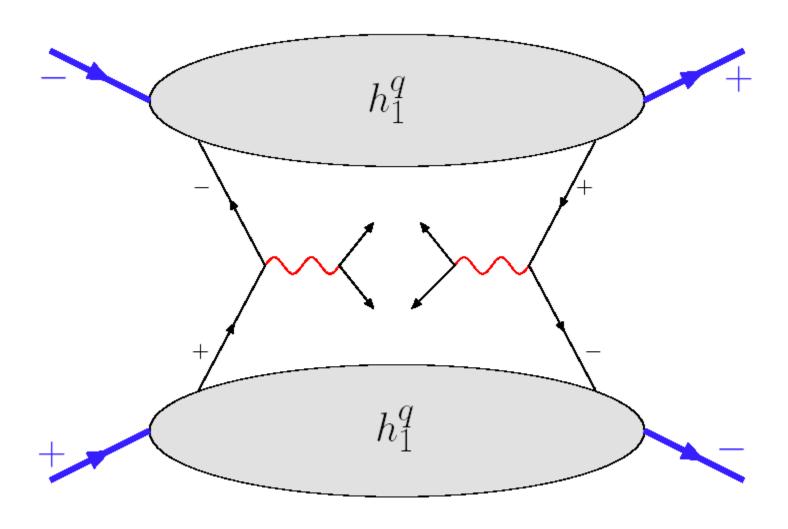


Figure 6: The single spin asymmetries $A_N^{\sin(\phi_S-\phi_\gamma)}$ for the Drell-Yan process $p^{\uparrow}\bar{p} \to \mu^{+}\mu^{-} + X$ at PAX, as function of $x_F = x_a - x_b$, averaged over the invariant mass range 4 < M < 6, rapidity |y| < 1 and transverse momentum $0 < q_T < 1 \text{ GeV}/c$, for $\sqrt{s} = 14 \text{ GeV}$.

Possible direct access to transversity: Drell-Yan processes

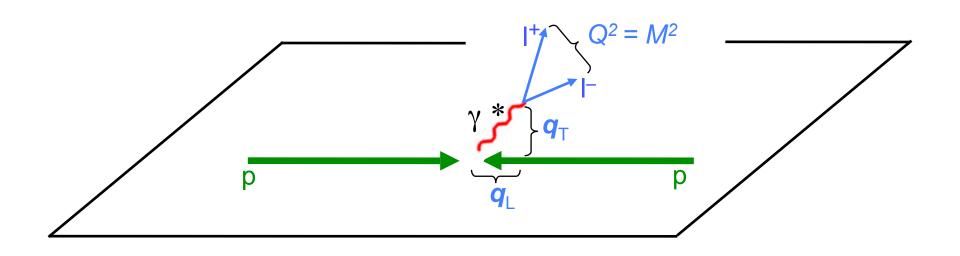
$$p p \to \ell^+ \ell^-, \ \pi p \to \ell^+ \ell^-, \ p \bar{p} \to \ell^+ \ell^-$$



Simple partonic cross section at collinear level

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}M^2 \,\mathrm{d}x_F} = \frac{4\pi\alpha^2}{9M^2 s} \, \frac{1}{x_1 + x_2} \sum_q e_q^2 \left[q(x_1, Q^2) \, \bar{q}(x_2, Q^2) + \bar{q}(x_1, Q^2) \, q(x_2, Q^2) \right]$$
$$x_F = x_1 - x_2 \qquad x_1 \, x_2 = M^2 / s \equiv \tau \qquad x_F = 2q_L / \sqrt{s}$$

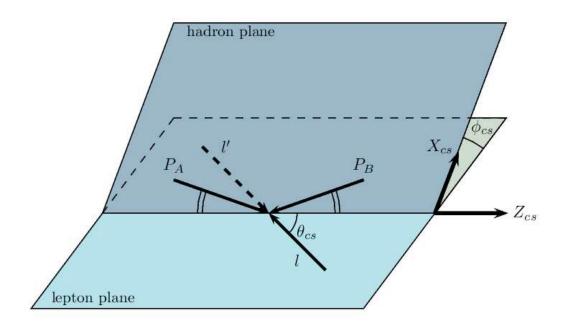
range of x_1 , x_2 explored depends on τ



Direct access to transversity from double transverse spin asymmetry

$$A_{_{TT}} = \frac{\mathrm{d}\sigma^{\uparrow\uparrow} - \mathrm{d}\sigma^{\uparrow\downarrow}}{\mathrm{d}\sigma^{\uparrow\uparrow} + \mathrm{d}\sigma^{\uparrow\downarrow}} = \hat{a}_{_{TT}} \frac{\sum_{q} e_{q}^{2} \left[h_{1q}(x_{1}) \, h_{1\bar{q}}(x_{2}) + h_{1\bar{q}}(x_{1}) \, h_{1q}(x_{2}) \right]}{\sum_{q} e_{q}^{2} \left[q(x_{1}) \, \bar{q}(x_{2}) + \bar{q}(x_{1}) \, q(x_{2}) \right]}$$

$$\hat{a}_{TT} = \frac{\mathrm{d}\hat{\sigma}^{\uparrow\uparrow} - \mathrm{d}\hat{\sigma}^{\uparrow\downarrow}}{\mathrm{d}\hat{\sigma}^{\uparrow\uparrow} + \mathrm{d}\hat{\sigma}^{\uparrow\downarrow}} = \frac{\sin^2\theta}{1 + \cos^2\theta} \, \cos(2\phi)$$



RHIC energies:
$$\sqrt{s} = 200 \, \mathrm{GeV}$$
 $M^2 \leq 100 \, \mathrm{GeV}$

 $au \leq 2 \cdot 10^{-3} \,$ small $\mathbf{x_1}$ and/or $\mathbf{x_2}$

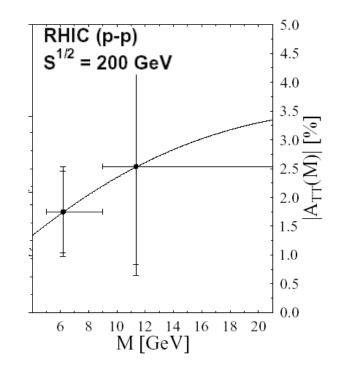
 $h_{1q}(x, Q^2)$ evolution much slower than $\Delta q(x, Q^2)$ and $q(x, Q^2)$ at small x

 A_{TT} at RHIC is very small smaller s would help

Barone, Calarco, Drago Martin, Schäfer, Stratmann, Vogelsang

 A_{TT} for Drell-Yan processes at RHIC

upgrades in luminosity expected

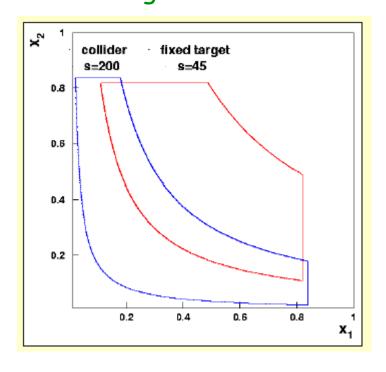


h_1 from $p^{\uparrow} \bar{p}^{\uparrow} \rightarrow \ell^+ \ell^- X$ at GSI

$$A_{TT} = \frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\uparrow\downarrow}}{d\sigma^{\uparrow\uparrow} + d\sigma^{\uparrow\downarrow}} = \hat{a}_{TT} \frac{\sum_{q} e_{q}^{2} \left[h_{1q}(x_{1}) h_{1q}(x_{2}) + h_{1\bar{q}}(x_{1}) h_{1\bar{q}}(x_{2}) \right]}{\sum_{q} e_{q}^{2} \left[q(x_{1}) q(x_{2}) + \bar{q}(x_{1}) \bar{q}(x_{2}) \right]} \simeq \hat{a}_{TT} \frac{h_{1u}(x_{1}) h_{1u}(x_{2})}{u(x_{1}) u(x_{2})}$$

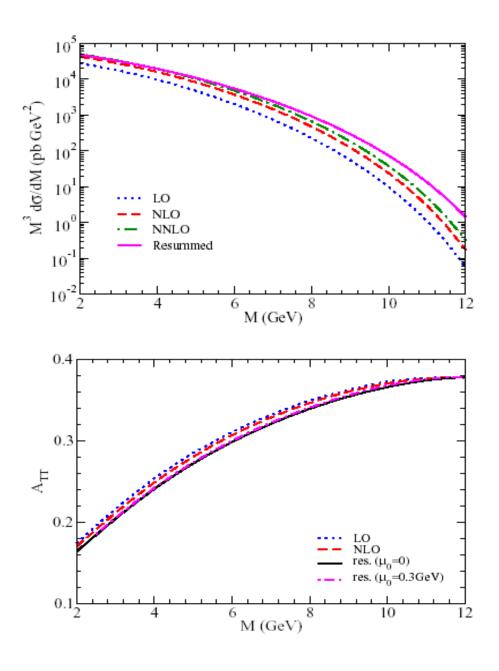
GSI energies: $s = 30 - 210 \, {\rm GeV}^2$ $M^2 > 2 \, {\rm GeV}^2$

large x_1, x_2



one measures h₁ in the quark valence region: A_{TT} is estimated to be large, between 0.2 and 0.4

PAX proposal: hep-ex/0505054



results for ATT stable under QCD corrections

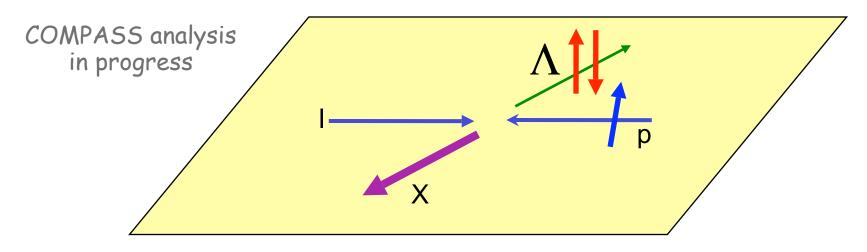
H. Shimizu, G. Sterman, W. Vogelsang and H. Yokoya

M. Guzzi, V. Barone,
A. Cafarella, C. Corianò
and P.G. Ratcliffe

Some alternative accesses to transversity

Inclusive Λ production and measure of Λ polarization

need to know transverse fragmentation function $\Delta_T D = D_{q^\uparrow}^{\Lambda^\uparrow} - D_{q^\uparrow}^{\Lambda^\downarrow}$



the Λ polarization vector measured from the proton angular distribution in the $\Lambda \to \pi p$ decay in the Λ helicity rest frame

$$W(\theta_p, \phi_p) = \frac{1}{4\pi} \left[1 + \alpha (P_z \cos \theta_p + P_x \sin \theta_p \cos \phi_p + P_y \sin \theta_p \sin \phi_p) \right]$$
$$= \frac{1}{4\pi} \left[1 + \mathbf{P} \cdot \hat{\mathbf{p}} \right]$$
$$\alpha = 0.642 \pm 0.013$$

collinear configuration, no need for intrinsic k_{\perp}

$$P_N^{[0S_N]} = \frac{2(1-y)}{1+(1-y)^2} \, \frac{\sum_q e_q^2 \, h_{1q}(x) \, \Delta_T D_{\Lambda/q}(z)}{\sum_q e_q^2 \, q(x) \, D_{\Lambda/q}(z)}$$

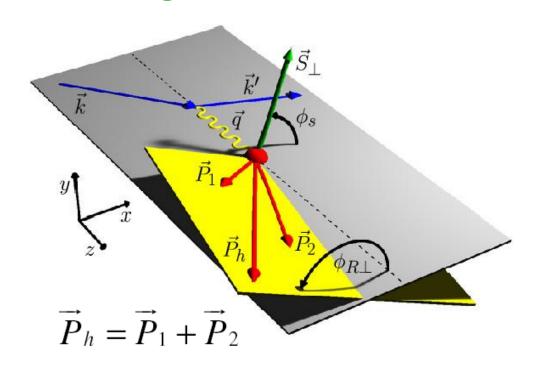
$$\Delta_T D = D_{q^{\uparrow}}^{\Lambda^{\uparrow}} - D_{q^{\uparrow}}^{\Lambda^{\downarrow}}$$

$$P_N^{[0S_N]} \simeq \frac{2(1-y)}{1+(1-y)^2} \frac{4h_{1u} + h_{1d}}{4u+d} \frac{\Delta_T D_{\Lambda/u}}{D_{\Lambda/u}}$$

similar result in $p\,p^\uparrow o \Lambda^\uparrow\, X$

$$P_N(\Lambda) \sim \sum_{abc} f_{a/p} \otimes h_{1b} \otimes d\Delta \sigma^{ab \to c \cdots} \otimes \Delta_T D_{\Lambda/c}$$

Two hadron production in SIDIS Di-hadron Fragmentation Function (DiFF)



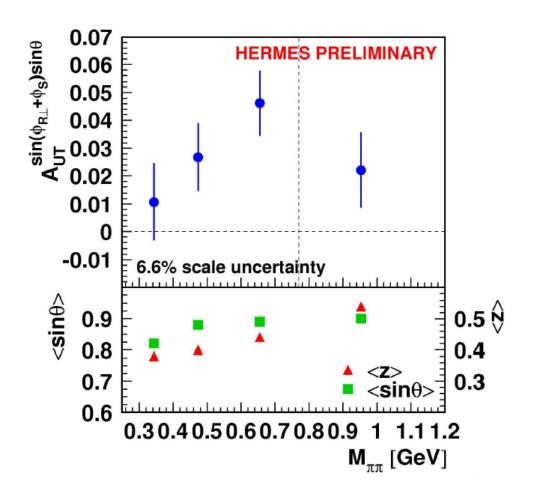
Chiral odd fragmentation function of a transversely polarized quark into two hadrons (interference between s and p wave)

Two hadron production in SIDIS Di-hadron Fragmentation Function (DiFF)



Chiral odd fragmentation function of a transversely polarized quark into two hadrons (interference between s and p wave)

Bacchetta, Boer, Jaffe, Jakob, Radici ...



$$A_{UT} = \frac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}} \propto \sin(\Phi_{R\perp} + \Phi_{S}) \frac{\sum_{q} e_{q}^{2} h_{1q} H_{1}^{DiFF}}{\sum_{q} e_{q}^{2} f_{1q} D}$$

Not all spin problems have been solved, but enormous progress has been made

The spin-orbiting structure of quarks in nucleons begins to emerge

Theory. Unintegrated PDF and FF play a crucial role; their Q² evolution is needed. Factorization and universality issues must be clarified, ...

Experiment. New data from COMPASS (proton target), JLab, RHIC, and GSI. D-Y processes very promising ...